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ABSTRACT

Data mining has matured as a field of basic andiegppesearch in conuter science in general a
e-commerce in particular. We limit our discussiondta mining in the context o-commerce. We also
mention a few directions for further work in thisrdain, based on the survey. In this paper, wednie
dynamic approeh that uses knowledge discovered in previous dpsolhe proposed approach is show
be effective for solving problems related to thécedncy of handling database updates, accuracgatd
mining results, gaining more knowledge and intagiren ¢ the results, and performance using Mar
chain, named for Andrey Markov, is a mathematigatesm that transits from one state to anﬂlertﬁbm

finite or countable number of possldtates) in a chainlike man -'I.I:.'l.l'
Vo
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J Order Status

Z None of the above

4. Modeling Sequence Data Patter n-based
Approach

. Detect common patterns or sequences in tra
data. A classification scheme can then be base
presence or flmsence of certain pattern
(Association rules)
. For instance, if sequence .GHI. indicates a¥il
buy, we may want to look for this sequence
new data.
Pros:
. Good software is readily available for detect

associations and patterns in sequence

.HGHI. — (0,0,0,0,0,0,1,2,6,0,

Pros:

. Easy to implement.

. Straightforward to include additional variab
such as demographics, time of day,

Cons:

. Ignores sequence informati

. How to make it dynamic?

6. Modeling Sequence Data [Pair wise
Distances Approach]
First define a distance mearegiibetween
sequenceghen classify or cluq-qré:&!'ed on th
distances ,.|'1l 4

L
Pros: | |‘I'."l'

' L
. Patterns themselves may be of inﬁ . Flexible apprqla_lll'

user. -}_.r
Cons: E.-
a

. Difficult to l-'e ad |t| ri
. Little pr |I|s anlng

5. Modelln a&aence Dﬁ ture
Vector Appro "_I

. ldea: Represent s{oﬁﬂ!& as folimaension
vectors of éatures;=then use a stand
classification or clustering algorithm
. For instance, a possible feature representatfi
example visits:
.ABDDFG. — (1,1,0,2,0,1,1,0,0,0,0)
.GGGGGHH.— (0,0,0,0,0,0,5,2,0,0,0)

Cons,
Wdlstance metrics and algorithms

!fbd'lctlng new sequences computation

d % demanding.

ﬂu

. Difficult to implement dynamicall

7. Markov Mixture M odels
. Assume buy visits are generated by a Mal
chain and norbuy visits are generated by
second Markov chain.
. Use Bayes. rule to determine the chain r
likely to be the generator of a new seque
Recently used for web log clustering ¢

visualization
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. Similar to hidden Markov models used in spt
processing (see [Rabiner 1989]) and
sequencing (see [Durbin et.al. 1998]).

8. What isaMarkov Chain?
Markov chain is a discrete (discrdatme) random

processwith the Markov propertyOften, the tern

"Markov chain" is usetb mean a Markov proce
which has a discrete (finite or countabstate-
space Usually a Markov chain would be defin
for a discrete set of times (i.e. discret-time
Markov chaini! although some authors use

same terminology where "time" can fte

continuous value€® Also seecontinuou-time

Markov processThe use of the term itMar.

chain Monte Carlomethodology co

where the process is in disctei
algorithm step with a co

The foIIown-hcenE

iscre-time

which isinac stdte at each.ﬁ_fh" with

state changing randoffily beqﬁ?‘[l steps. The
but they can eqt

are often thought of it
well refer to physicar distance or any otl
discrete measurement; formally, the steps are

the integersor natural numbersand the randor

process is a mapping of these to states.
Markov property states that theonditional

probability distributionfor the system at the ne

stp (and in fact at all future stepwgiven its
current state depends only on the current sta
the system, and not additionally on the state ®
system at previous steps.

Probabilistic modelsof a system which i
assumed to transition between a rete set of
states.

. Future behavior depends only on current s
not on past.
. In our case, states in chain correspond to ¢

in a visit.

71
2 w for Dynamic Prediction Illustration
113'5ume visit data are generated by one of

d % Markov chains:

process meﬂ s'-'

plAA)

"Non-Buy"
pisA)

3

p(BB]
. Is a given sequence generated by model or

non-buy model?
MMM for Dynamic Prediction Computation
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Fitting model parameters. Maximum
likelihood fit is simply transition matrice
observed in training data.

. Classifying a new sequence: To classify .AAB,

use Bayes. rule:

Pr{Buy |"AAB"} =
Pr{" AAB"| Buy}Pr{Buy}
Pr{" AAB"| Buy}Pr{Buy}+Pr{" AAB"| Non — Buy}Pr{Non — Buy}

where Pr{Buy} and Pr {Non-Buy} estimated apriori.
Pr{"AAB" | Non —Buy} = p(sA)p(AA)p(AB)
Pr{"AAB" | Buy} = q(sA)q(AA)q(AB)
9. Summary:
We have solvedClickstream analysis problem
real, interesting, and useful. We have develc
Dynamic prediction methods through Mark

Chain

pheromena, including asset akice

crashes. The fifinanfm_

chain was f
was the ra@im
Hamilton (1989 in

to model swit

Markov chains are wused in Finan i
Economics to model a variety lh_
.I-i ‘.
ndya

mtween pﬂ[bl-sb .of F
,!; t returit A

arkov Switching

volatility and low voleﬂl.l.ity

more recent example is

Multifractal asset pricin.g model, which buil
upon the convenience of earliegime-switching
models®? It uses an arbitrarily large Marke
chain to drive the level of volatility of ass
returns. Dynamic macroeconomics heavily

Markov chains. An exan@ is using Marko\

'L“ﬁ'umﬂ&

- g
u Maur

ras : .in.10;4.ﬂ—°] Another
hi del ofJame Iﬂj

_._'I Model & Manage Bioresponses, Katholie

h a Markov c1|éi#|’s us

chains to exogenously model prices of eq

(stock) in ageneral equilibriur setting. Leontief's

Input-output modeis a Markov chair
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